Evaluating Lexical Frequency Measures for Sociolinguistic Variation

Ruaridh Purse & Meredith Tamminga University of Pennsylvania

Lexical Frequency in Perception/Production

- Measures of lexical frequency are correlated with effects in perception...
 - Easier recognition in noise (Howes 1957, Luse et al. 1990, Savin 1963)
 - Faster lexical decision (Connine *et al.* 1990, Dupoux & Mehler 1990, Taft & Hambly 1986)
 - Rhyme monitoring (McQueen 1993), Word spotting (Freedman 1992), Crossmodal priming (Marslen-Wilson 1990) etc.
- ... And production...
 - Faster picture naming (Oldfield & Wingfield 1965, Wingfield 1968)
 - Fewer speech errors (Dell 1990)
 - More 'lenition', and more advanced variants from changes in progress (Pierrehumbert 2002, Bybee 2002)

Why are frequent words produced differently?

• Speaker-oriented perspective

- Articulatory routinisation (Bybee 2001)
- Persistent leniting bias (Pierrehumbert 2002)
- Accumulation of lenited exemplars
- Listener-oriented perspective
 - Frequency is correlated with predictability (Cohen Priva 2017, Bell et al. 2009)
 - High level of resting activation (Marslen-Wilson 1990, Tamminga et al. 2017)
 - Speaker can hypo- or hyper-articulate to attend to the listener's needs (Lindblom 1990)

Many measures of frequency

- Whole-word frequency
 - Every time a word appears, regardless of meaning
 - Standardly used; easy to automate (SUBTLEX count)
 - Some weird effects around homonyms

LEFT B

Root frequency

- Sum of all whole-word frequencies that share a root
- Difficult to automate
- Conditional frequency
 - Probability of whole-word given the root
 - Whole-word frequency / Root frequency

Two morphophonological variables TD ING

- Surface absence of underlying coronal stop in C_# context
 - \circ $\,$ e.g. old vs ol' $\,$
- More deletion in monomorphemes (*mist*) than complex forms (*missed*).

- Alternation between [ŋ] and [n] in word-final ING
 - e.g. working vs workin'
- More [n] in progressive forms (*I* am working) than gerundive forms (Working is hard).
- This study: Which frequency measure best accounts for variance? How does lexical frequency interact with morphology?

Data & Methods

- Philadelphia Neighborhood Corpus
 - 118 white speakers
 - 11964 TD tokens, 5452 ING tokens

• Lexical frequency measures from $SUBTLEX_{US}$

• Whole-word, root, conditional...

785	leeward	2	2	2	2	0.04	0.4771	0.02	0.4771	Adverb	2	1.00	Adverb	2	1.768955
786	leeway	28	26	28	26	0.55	1.4624	0.31	1.4314	Noun	28	1.00	Noun	28	2.754232
787	leeways	1	1	1	1	0.02	0.3010	0.01	0.3010	Noun	1	1.00	Noun	1	1.592864
788	left	24707	7001	23534	6957	484.45	4.3928	83.46	3.8452	Verb	18826	0.76	Verb.Adjective.Adverb.Noun.1	18826.5400.229	5.684672
789	lefter	1	1	0	0	0.02	0.3010	0.01	0.3010	Adjective	1	1.00	Adjective	1	1.592864
790	lefties	13	10	8	8	0.25	1.1461	0.12	1.0414	Noun	12	0.92	Noun.Name	12.1	2.437962
791	leftist	9	9	8	8	0.18	1.0000	0.11	1.0000	Noun	9	1.00	Noun	9	2.291834
792	leftists	2	2	2	2	0.04	0.4771	0.02	0.4771	Noun	2	1.00	Noun	2	1.768955
793	leftover	61	58	59	56	1.20	1.7924	0.69	1.7709	Adjective	61	1.00	Adjective	61	3.084226
794	leftovers	127	110	119	103	2.49	2.1072	1.31	2.0453	Noun	127	1.00	Noun	127	3.399044
795	lefts	37	21	36	21	0.73	1.5798	0.25	1.3424	Noun	37	1.00	Noun	37	2.871618
796	lefty	158	52	29	19	3.10	2.2014	0.62	1.7243	Noun	144	0.91	Noun.Name	144.14	3.493231
797	leg	2882	1588	2832	1566	56.51	3.4598	18.93	3.2011	Noun	2871	1.00	Noun.Verb	2871.8	4.751679
798	legacies	6	6	6	6	0.12	0.8451	0.07	0.8451	Noun	6	1.00	Noun	6	2.136932
799	legacy	256	193	245	188	5.02	2.4099	2.30	2.2878	Noun	256	1.00	Noun	256	3.701767
800	legal	1821	1200	1662	1136	35.71	3.2605	14.31	3.0795	Adjective	1827	1.00	Adjective.Noun	1827.2	4.552383

Data & Methods continued

• Whole-word and Root frequency log-transformed and centred

- Mixed effects logistic regression models
 - All combinations of lexical frequency measures
 - Controlled for grammatical class and speech rate

- ANOVAs to compare nested models
 - Optimal model minimizes AIC and BIC and significantly maximizes log-likelihood

Modeling TD

- Root frequency most effective measure
 - Root Freq improves a control model

Add...

- Whatever the model has, Root Freq significantly improves it
- Root Freq predicts TD outcomes
 - 64% retention at -2 RootFreq vs.
 60% retention and 2 RootFreq

	with						
_\		Whole	Root	Cond			
	(control model)	.120	.008 **	.815			
	Whole		.022 *	.458			
	Root	.456		.982			
	Cond	.088	.007 **				
	Whole + Root			.631			
	Whole + Cond		.026 *				
	Root + Cond	.375					

Modeling ING

- Whole-word frequency most effective measure
 - Once whole-word is in the model, no other measure improves it

Add...

- Whole-word frequency still improves all other models
- Whole-word frequency predicts
 ING outcomes
 - 61% engma at -2 whole-word frequency vs. 60% engma for 2

Start with				
	Whole	Root	Cond	
(control model)	<.001 ***	<.001 ***	.013*	
Whole		1.000	1.000	
Root	.022 *		.712	
Cond	<.001 ***	<.001 ***		
Whole + Root			.070	
Whole + Cond		.833		
Root + Cond	.004 **			

Discussion: ING

- Actual magnitude of the predicted effect is extremely small
 - Highly significant, but how much does it matter?
 - P-value on its own is not always informative (McShane *et al.* 2017, Nature Editorial 2019)
- Morphosyntactic categorisation is quite complicated (Tamminga, 2014)
 - Nuanced tests that require pragmatic context
 - Lots of ambiguity in the Gerundive category especially

Discussion: TD

• Why is Root frequency the measure that matters?

• Why does it only matter for monomorphemes?

Discussion: TD

- For complex forms, the variable environment is formed with a suffix
- It does not reoccur in morphological relatives

 But for monomorphemes, the same variable environment appears across many related words

- Not all related words can feature deletion!
- Relative frequency of related words (Hay 2001) and frequency of contexts (Guy *et al.* 2008, Forrest 2017, Sloos 2019) both matter
- Next: proportions of related words *with* their contextual baggage
 - Accumulating exemplars: undeletable words contribute to increased retention
 - Increasing resting activation: all related words contribute to increased deletion

- Not all related words can feature deletion!
- Relative frequency of related words (Hay 2001) and frequency of contexts (Guy *et al.* 2008, Forrest 2017, Sloos 2019) both matter
- Next: proportions of related words *with* their contextual baggage
 - Accumulating exemplars: undeletable words contribute to increased retention
 - Increasing resting activation: all related words contribute to increased deletion

Interim Practical Recommendations

- Different measures of lexical frequency may capture different things
 - Predictability, resting activation, degree of articulatory routinisation, etc.
 - Look out for...
 - Interactions with other predictors
 - The magnitude of the effect
- Use a measure that is appropriate for your purposes
 - What are the (structural/social/phonetic) properties of your variable?
 - What is frequency a proxy for?